A well-posed problem for the heat equation

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Well - Posed Problem

Many statistical problems, including some of the most important for physical applications, have long been regarded as underdetermined from the standpoint of a strict frequency de nition of probability; yet they may appear well posed or even overdetermined by the principles of maximum entropy and transformation groups. Furthermore, the distributions found by these methods turn out to have a de n...

متن کامل

What Slip Boundary Conditions Induce a Well–Posed Problem for the Navier–Stokes Equation?

The system (1), (2) describes the motion of a viscous incompressible fluid with a constant density (we assume that it equals one). We denote by u the velocity, by p the pressure, by f the specific body force and by ν the coefficient of viscosity. The equation (1) expresses the balance of momentum and the equation (2) represents the condition of incompressibility. By a well–posed problem we mean...

متن کامل

A Well-Posed Free Boundary Value Problem for a Hyperbolic Equation with Dirichlet Boundary Conditions

We construct solutions of a free boundary value problem for a hyperbolic equation with Dirichlet boundary data. This problem arises from a model of deformation of granular media.

متن کامل

Well-posed Ness of the Initial Value Problem for the Korteweg-de Vries Equation

The KdV equation, which was first derived as a model for unidirectional propagation of nonlinear dispersive long waves [21], has been considered in different contexts, namely in its relation with the inverse scattering method, in plasma physics, and in algebraic geometry (see [24], and references therein). Our purpose is to study local and global well-posedness of the IVP (1.1) in classical Sob...

متن کامل

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1974

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1974-13564-0